Prometheus 监控系统

悠扬的幻想天空 - 博客

December 6, 2019 技术 • 作者:悠扬

Metrics

通过Node Exporter暴露的HTTP服务,Prometheus可以采集到当前主机所有监控指标的样本数据。例如:

# HELP node_cpu Seconds the cpus spent in each mode.
# TYPE node_cpu counter
node_cpu{cpu="cpu0",mode="idle"} 362812.7890625
# HELP node_load1 1m load average.
# TYPE node_load1 gauge
node_load1 3.0703125

其中非#开头的每一行表示当前Node Exporter采集到的一个监控样本:

  • node_cpu和node_load1表明了当前指标的名称
  • 大括号中的标签则反映了当前样本的一些特征和维度、浮点数则是该监控样本的具体值。

在形式上,所有的指标(Metric)都通过如下格式标示:

<metric name>{<label name>=<label value>, ...}

时间序列

Prometheus会将所有采集到的样本数据以时间序列(time-series)的方式保存在内存数据库中,并且定时保存到硬盘上。

time-series是按照时间戳和值的序列顺序存放的,我们称之为向量(vector)。

每条time-series通过指标名称(metrics name)和一组标签集(labelset)命名。如下所示,可以将time-series理解为一个以时间为Y轴的数字矩阵:

  ^
  │   . . . . . . . . . . . . . . . . .   . .   node_cpu{cpu="cpu0",mode="idle"}
  │     . . . . . . . . . . . . . . . . . . .   node_cpu{cpu="cpu0",mode="system"}
  │     . . . . . . . . . .   . . . . . . . .   node_load1{}
  │     . . . . . . . . . . . . . . . .   . .  
  v
    <------------------ 时间 ---------------->

类型

Prometheus定义了4中不同的指标类型(metric type):Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)

Counter:只增不减的计数器

Counter类型的指标其工作方式和计数器一样,只增不减(除非系统发生重置)。常见的监控指标,如 http_requests_total,node_cpu 都是 Counter 类型的监控指标。 一般在定义 Counter 类型指标的名称时推荐使用_total作为后缀。

例如,通过rate()函数获取HTTP请求量的增长率:

rate(http_requests_total[5m])

查询当前系统中,访问量前10的HTTP地址:

topk(10, http_requests_total)
Gauge:可增可减的仪表盘

与Counter不同,Gauge类型的指标侧重于反应系统的当前状态。因此这类指标的样本数据可增可减。常见指标如:node_memory_MemFree(主机当前空闲的内容大小)、node_memory_MemAvailable(可用内存大小)都是Gauge类型的监控指标。

通过Gauge指标,用户可以直接查看系统的当前状态:

node_memory_MemFree

对于Gauge类型的监控指标,通过PromQL内置函数delta()可以获取样本在一段时间返回内的变化情况。例如,计算CPU温度在两个小时内的差异:

delta(cpu_temp_celsius{host="zeus"}[2h])

还可以使用deriv()计算样本的线性回归模型,甚至是直接使用predict_linear()对数据的变化趋势进行预测。例如,预测系统磁盘空间在4个小时之后的剩余情况:

predict_linear(node_filesystem_free{job="node"}[1h], 4 * 3600)
使用Histogram和Summary分析数据分布情况

Histogram 和 Summary 主用用于统计和分析样本的分布情况。

在大多数情况下人们都倾向于使用某些量化指标的平均值,例如CPU的平均使用率、页面的平均响应时间。这种方式的问题很明显,以系统API调用的平均响应时间为例:如果大多数API请求都维持在100ms的响应时间范围内,而个别请求的响应时间需要5s,那么就会导致某些WEB页面的响应时间落到中位数的情况,而这种现象被称为长尾问题。

为了区分是平均的慢还是长尾的慢,最简单的方式就是按照请求延迟的范围进行分组。例如,统计延迟在0~10ms之间的请求数有多少而10~20ms之间的请求数又有多少。通过这种方式可以快速分析系统慢的原因。Histogram 和 Summary 都是为了能够解决这样问题的存在,通过 Histogram 和 Summary 类型的监控指标,我们可以快速了解监控样本的分布情况。

例如,指标 prometheus_tsdb_wal_fsync_duration_seconds 的指标类型为 Summary 。 它记录了 Prometheus Serve r中 wal_fsync 处理的处理时间,通过访问 Prometheus Server 的 /metrics 地址,可以获取到以下监控样本数据:

# HELP prometheus_tsdb_wal_fsync_duration_seconds Duration of WAL fsync.
# TYPE prometheus_tsdb_wal_fsync_duration_seconds summary
prometheus_tsdb_wal_fsync_duration_seconds{quantile="0.5"} 0.012352463
prometheus_tsdb_wal_fsync_duration_seconds{quantile="0.9"} 0.014458005
prometheus_tsdb_wal_fsync_duration_seconds{quantile="0.99"} 0.017316173
prometheus_tsdb_wal_fsync_duration_seconds_sum 2.888716127000002
prometheus_tsdb_wal_fsync_duration_seconds_count 216

从上面的样本中可以得知当前 Prometheus Serve r进行 wal_fsync 操作的总次数为216次,耗时2.888716127000002s。其中中位数(quantile=0.5)的耗时为0.012352463,9分位数(quantile=0.9)的耗时为0.014458005s。

在Prometheus Server自身返回的样本数据中,我们还能找到类型为Histogram的监控指标prometheus_tsdb_compaction_chunk_range_bucket

# HELP prometheus_tsdb_compaction_chunk_range Final time range of chunks on their first compaction
# TYPE prometheus_tsdb_compaction_chunk_range histogram
prometheus_tsdb_compaction_chunk_range_bucket{le="100"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="400"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="1600"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="6400"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="25600"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="102400"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="409600"} 0
prometheus_tsdb_compaction_chunk_range_bucket{le="1.6384e+06"} 260
prometheus_tsdb_compaction_chunk_range_bucket{le="6.5536e+06"} 780
prometheus_tsdb_compaction_chunk_range_bucket{le="2.62144e+07"} 780
prometheus_tsdb_compaction_chunk_range_bucket{le="+Inf"} 780
prometheus_tsdb_compaction_chunk_range_sum 1.1540798e+09
prometheus_tsdb_compaction_chunk_range_count 780

与 Summary 类型的指标相似之处在于 Histogram 类型的样本同样会反应当前指标的记录的总数(以 _count 作为后缀)以及其值的总量(以 _sum 作为后缀)。不同在于Histogram指标直接反应了在不同区间内样本的个数,区间通过标签len进行定义。

同时对于Histogram的指标,我们还可以通过histogram_quantile()函数计算出其值的分位数。不同在于Histogram通过histogram_quantile函数是在服务器端计算的分位数。 而Sumamry的分位数则是直接在客户端计算完成。因此对于分位数的计算而言,Summary在通过PromQL进行查询时有更好的性能表现,而Histogram则会消耗更多的资源。反之对于客户端而言Histogram消耗的资源更少。在选择这两种方式时用户应该按照自己的实际场景进行选择。

PromQL

当我们直接使用监控指标名称查询时,可以查询该指标下的所有时间序列。如:

http_requests_total

等同于:

http_requests_total{}

该表达式会返回指标名称为http_requests_total的所有时间序列:

http_requests_total{code="200",handler="alerts",instance="localhost:9090",job="prometheus",method="get"}=([email protected])
http_requests_total{code="200",handler="graph",instance="localhost:9090",job="prometheus",method="get"}=([email protected])

PromQL还支持用户根据时间序列的标签匹配模式来对时间序列进行过滤,目前主要支持两种匹配模式:完全匹配和正则匹配。

PromQL支持使用 =!= 两种完全匹配模式:

  • 通过使用 label=value 可以选择那些标签满足表达式定义的时间序列;
  • 反之使用 label!=value 则可以根据标签匹配排除时间序列;

例如,如果我们只需要查询所有http_requests_total时间序列中满足标签instance为localhost:9090的时间序列,则可以使用如下表达式:

http_requests_total{instance="localhost:9090"}

反之使用 instance!="localhost:9090" 则可以排除这些时间序列:

http_requests_total{instance!="localhost:9090"}

除了使用完全匹配的方式对时间序列进行过滤以外,PromQL还可以支持使用正则表达式作为匹配条件,多个表达式之间使用|进行分离:

  • 使用 label=~regx 表示选择那些标签符合正则表达式定义的时间序列;
  • 反之使用 label!~regx 进行排除;

例如,如果想查询多个环节下的时间序列序列可以使用如下表达式:

http_requests_total{environment=~"staging|testing|development",method!="GET"}
范围查询

直接通过类似于PromQL表达式httprequeststotal查询时间序列时,返回值中只会包含该时间序列中的最新的一个样本值,这样的返回结果我们称之为瞬时向量。而相应的这样的表达式称之为__瞬时向量表达式*。

而如果我们想过去一段时间范围内的样本数据时,我们则需要使用区间向量表达式。区间向量表达式和瞬时向量表达式之间的差异在于在区间向量表达式中我们需要定义时间选择的范围,时间范围通过时间范围选择器[]进行定义。例如,通过以下表达式可以选择最近5分钟内的所有样本数据:

http_request_total{}[5m]

该表达式将会返回查询到的时间序列中最近5分钟的所有样本数据:

http_requests_total{code="200",handler="alerts",instance="localhost:9090",job="prometheus",method="get"}=[
    [email protected]
    [email protected]
    [email protected]
    [email protected]
    [email protected]
    [email protected]
]
http_requests_total{code="200",handler="graph",instance="localhost:9090",job="prometheus",method="get"}=[
    4 @1518096812.326
    [email protected]
    [email protected]
    [email protected]
    [email protected]
    [email protected]
]

通过区间向量表达式查询到的结果我们称为区间向量

除了使用m表示分钟以外,PromQL的时间范围选择器支持其它时间单位:

  • s - 秒
  • m - 分钟
  • h - 小时
  • d - 天
  • w - 周
  • y - 年
时间位移操作

在瞬时向量表达式或者区间向量表达式中,都是以当前时间为基准:

http_request_total{} # 瞬时向量表达式,选择当前最新的数据
http_request_total{}[5m] # 区间向量表达式,选择以当前时间为基准,5分钟内的数据

而如果我们想查询,5分钟前的瞬时样本数据,或昨天一天的区间内的样本数据呢? 这个时候我们就可以使用位移操作,位移操作的关键字为offset

可以使用offset时间位移操作:

http_request_total{} offset 5
mhttp_request_total{}[1d] offset 1d
使用聚合操作

一般来说,如果描述样本特征的标签(label)在并非唯一的情况下,通过PromQL查询数据,会返回多条满足这些特征维度的时间序列。而PromQL提供的聚合操作可以用来对这些时间序列进行处理,形成一条新的时间序列:

# 查询系统所有http请求的总量
sum(http_request_total)

# 按照mode计算主机CPU的平均使用时间
avg(node_cpu) by (mode)

# 按照主机查询各个主机的CPU使用率
sum(sum(irate(node_cpu{mode!='idle'}[5m]))  / sum(irate(node_cpu[5m]))) by (instance)
数学运算

PromQL支持的所有数学运算符如下所示:

  • + (加法)
  • - (减法)
  • * (乘法)
  • / (除法)
  • % (求余)
  • ^ (幂运算)

布尔运算符如下:

  • == (相等)
  • != (不相等)
  • > (大于)
  • < (小于)
  • >= (大于等于)
  • <= (小于等于)
使用bool修饰符改变布尔运算符的行为

布尔运算符的默认行为是对时序数据进行过滤,prometheus_http_requests_total > bool 1000

prometheus_http_requests_total{code="200",handler="/metrics",instance="localhost:9090",job="prometheus"}    204802

而在其它的情况下我们可能需要的是真正的布尔结果。例如,只需要知道当前模块的HTTP请求量是否>=1000,如果大于等于1000则返回1(true)否则返回0(false)。这时可以使用bool修饰符改变布尔运算的默认行为。 例如prometheus_http_requests_total > bool 1000

{code="200",handler="/flags",instance="localhost:9090",job="prometheus"}    0
{code="200",handler="/graph",instance="localhost:9090",job="prometheus"}    0
{code="200",handler="/metrics",instance="localhost:9090",job="prometheus"}    1
{code="200",handler="/rules",instance="localhost:9090",job="prometheus"}    0
{code="200",handler="/service",instance="localhost:9090",job="prometheus"}    0
使用集合运算符

使用瞬时向量表达式能够获取到一个包含多个时间序列的集合,我们称为瞬时向量。 通过集合运算,可以在两个瞬时向量与瞬时向量之间进行相应的集合操作。目前,Prometheus支持以下集合运算符:

  • and (并且)
  • or (或者)
  • unless (排除)

vector1 and vector2 会产生一个由vector1的元素组成的新的向量。该向量包含vector1中完全匹配vector2中的元素组成。

vector1 or vector2 会产生一个新的向量,该向量包含vector1中所有的样本数据,以及vector2中没有与vector1匹配到的样本数据。

vector1 unless vector2 会产生一个新的向量,新向量中的元素由vector1中没有与vector2匹配的元素组成。

匹配

在操作符两边表达式标签不一致的情况下,可以使用on(label list)或者ignoring(label list)来修改便签的匹配行为。使用ignoreing可以在匹配时忽略某些便签。而on则用于将匹配行为限定在某些便签之内。

例如当存在样本:

method_code:http_errors:rate5m{method="get", code="500"}  24
method_code:http_errors:rate5m{method="get", code="404"}  30
method_code:http_errors:rate5m{method="put", code="501"}  3
method_code:http_errors:rate5m{method="post", code="500"} 6
method_code:http_errors:rate5m{method="post", code="404"} 21

method:http_requests:rate5m{method="get"}  600
method:http_requests:rate5m{method="del"}  34
method:http_requests:rate5m{method="post"} 120

使用PromQL表达式:

method_code:http_errors:rate5m{code="500"} / ignoring(code) method:http_requests:rate5m

该表达式会返回在过去5分钟内,HTTP请求状态码为500的在所有请求中的比例。如果没有使用ignoring(code),操作符两边表达式返回的瞬时向量中将找不到任何一个标签完全相同的匹配项。

因此结果如下:

{method="get"}  0.04            //  24 / 600
{method="post"} 0.05            //   6 / 120

同时由于method为put和del的样本找不到匹配项,因此不会出现在结果当中。

多对一和一对多两种匹配模式指的是“一”侧的每一个向量元素可以与"多"侧的多个元素匹配的情况。在这种情况下,必须使用group修饰符:group_left或者group_right来确定哪一个向量具有更高的基数(充当“多”的角色)。

多对一和一对多两种模式一定是出现在操作符两侧表达式返回的向量标签不一致的情况。因此需要使用ignoring和on修饰符来排除或者限定匹配的标签列表。

例如,使用表达式:

method_code:http_errors:rate5m / ignoring(code) group_left method:http_requests:rate5m

该表达式中,左向量method_code:http_errors:rate5m包含两个标签method和code。而右向量method:http_requests:rate5m中只包含一个标签method,因此匹配时需要使用ignoring限定匹配的标签为code。 在限定匹配标签后,右向量中的元素可能匹配到多个左向量中的元素 因此该表达式的匹配模式为多对一,需要使用group修饰符group_left指定左向量具有更好的基数。

最终的运算结果如下:

{method="get", code="500"}  0.04            //  24 / 600
{method="get", code="404"}  0.05            //  30 / 600
{method="post", code="500"} 0.05            //   6 / 120
{method="post", code="404"} 0.175           //  21 / 120

Prometheus还提供了下列内置的聚合操作符,这些操作符作用域瞬时向量。可以将瞬时表达式返回的样本数据进行聚合,形成一个新的时间序列。

  • sum (求和)
  • min (最小值)
  • max (最大值)
  • avg (平均值)
  • stddev (标准差)
  • stdvar (标准差异)
  • count (计数)
  • count_values (对value进行计数)
  • bottomk (后n条时序)
  • topk (前n条时序)
  • quantile (分布统计)

without用于从计算结果中移除列举的标签,而保留其它标签。by则正好相反,结果向量中只保留列出的标签,其余标签则移除。通过without和by可以按照样本的问题对数据进行聚合。

例如:

sum(http_requests_total) without (instance)

等价于

sum(http_requests_total) by (code,handler,job,method)

quantile用于计算当前样本数据值的分布情况quantile(φ, express)其中0 ≤ φ ≤ 1。

例如,当φ为0.5时,即表示找到当前样本数据中的中位数:

quantile(0.5, http_requests_total)
计算Counter指标增长率

increase(v range-vector) 函数是PromQL中提供的众多内置函数之一。其中参数v是一个区间向量,increase函数获取区间向量中的第一个后最后一个样本并返回其增长量。因此,可以通过以下表达式Counter类型指标的增长率:

increase(node_cpu[2m]) / 120

这里通过node_cpu[2m]获取时间序列最近两分钟的所有样本,increase计算出最近两分钟的增长量,最后除以时间120秒得到node_cpu样本在最近两分钟的平均增长率。并且这个值也近似于主机节点最近两分钟内的平均CPU使用率。

除了使用increase函数以外,PromQL中还直接内置了 rate(v range-vector) 函数,rate函数可以直接计算区间向量v在时间窗口内平均增长速率。因此,通过以下表达式可以得到与increase函数相同的结果:

rate(node_cpu[2m])

需要注意的是使用rate或者increase函数去计算样本的平均增长速率,容易陷入“长尾问题”当中,其无法反应在时间窗口内样本数据的突发变化。 例如,对于主机而言在2分钟的时间窗口内,可能在某一个由于访问量或者其它问题导致CPU占用100%的情况,但是通过计算在时间窗口内的平均增长率却无法反应出该问题。

为了解决该问题,PromQL提供了另外一个灵敏度更高的函数irate(v range-vector)。irate同样用于计算区间向量的计算率,但是其反应出的是瞬时增长率。irate函数是通过区间向量中最后两个两本数据来计算区间向量的增长速率。这种方式可以避免在时间窗口范围内的“长尾问题”,并且体现出更好的灵敏度,通过irate函数绘制的图标能够更好的反应样本数据的瞬时变化状态。

irate(node_cpu[2m])

irate函数相比于rate函数提供了更高的灵敏度,不过当需要分析长期趋势或者在告警规则中,irate的这种灵敏度反而容易造成干扰。因此在长期趋势分析或者告警中更推荐使用rate函数。

预测Gauge指标变化趋势

在一般情况下,系统管理员为了确保业务的持续可用运行,会针对服务器的资源设置相应的告警阈值。例如,当磁盘空间只剩512MB时向相关人员发送告警通知。 这种基于阈值的告警模式对于当资源用量是平滑增长的情况下是能够有效的工作的。 但是如果资源不是平滑变化的呢? 比如有些某些业务增长,存储空间的增长速率提升了高几倍。这时,如果基于原有阈值去触发告警,当系统管理员接收到告警以后可能还没来得及去处理问题,系统就已经不可用了。 因此阈值通常来说不是固定的,需要定期进行调整才能保证该告警阈值能够发挥去作用。那么还有没有更好的方法吗?

PromQL中内置的 predict_linear(v range-vector, t scalar) 函数可以帮助系统管理员更好的处理此类情况,predict_linear函数可以预测时间序列v在t秒后的值。它基于简单线性回归的方式,对时间窗口内的样本数据进行统计,从而可以对时间序列的变化趋势做出预测。例如,基于2小时的样本数据,来预测主机可用磁盘空间的是否在4个小时候被占满,可以使用如下表达式:

predict_linear(node_filesystem_free{job="node"}[2h], 4 * 3600) < 0

已有 3 条评论

  1. xss xss

    kll

  2. 沈怀卿 沈怀卿

    板凳也行

  3. zik zik

    Nice!

添加新评论